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1 INTRODUCTION  
AMONG a variety of speech recognition 

algorithms including dynamic time warping (DTW) 
and neural network, the hidden Markov model 
(HMM) based algorithm has been most widely applied 
to speech recognition due to its robustness to speech 
and speaker variations (Rabiner & Juang, 1993, 
Czyzewski. A., 1996, Macias-Guarasa, J. et. al. 2009, 
Xihao, et. al. 2013, Ting, 2013, Paramonov, 2017). In 
general, a speech recognition system grounded on the 
HMM algorithm consists of two stages (Rabiner, 
1989), training and recognition, as depicted in Figure 
1. The training stage is to obtain a distinct HMM for 
each reference model. In this stage, speech feature 
vectors extracted from short-segmented speech signals 
are trained to derive HMMs. During the speech 
recognition stage, the recognizer computes likelihood 
scores to find the best matching model by comparing 

the utterance with the trained HMMs. Since the 
reference models are generated at the off-line training 
stage prior to the on-line recognition stage, 
observation probability computation (OPC) and 
likelihood score computation (LSC) are the most time 
consuming parts of a HMM-based speech recognition 
system (Rabiner, 1989). 

THE Viterbi algorithm has been widely employed 
in the likelihood score computation, as it is efficient in 
finding the best matching model (Rabiner & Juang, 
1993, Lou, 1995, Prasad, 2018). However, the 
computational complexity of the Viterbi algorithm is 
linearly proportional to the number of reference 
models and their states. Due to its exhaustive 
procedure covering the whole reference models, the 
speech recognition system inevitably suffers from a 
large amount of computation and enormous data 
accesses. Moreover, each state in the Viterbi scoring 
demands to compute the observation probability. Such  
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Constants in HMM  
Number of states N 
Length of times T 
Number of candidate words W 
Variables in HMM 
State index 1 ≤ i , j ≤ N 
Time index 1 ≤ t ≤ T 
Word index 1≤ v ≤ W 
Probabilities in HMM 
Initial state probability π={πj},  
State transition probability A={aij} 
Observation probability B={bj(ot)} 
State probability δj(t) 
Isolated word probability P(o|λv) 

 
 

Table 1. Symbol list. 

computation is a serious burden in implementing a 
high-speed speech recognition system irrespective of 
whether it is realized in software or in hardware. This 
problem becomes more severe in recent speech 
recognition systems that have a large amount of 
reference models and states. 

A modified Viterbi scoring procedure is proposed 
in this paper to eliminate unnecessary computations. 
Since the Viterbi scoring algorithm is to find the best 
matching model among many reference ones, it is 
unnecessary for the speech recognizer to calculate the 
remaining score probabilities after the best matching 
reference model is found. We apply Dijkstra’s 
shortest-path algorithm (Nilsson, 1980) to the scoring 
procedure and propose an efficient structure to decide 
the best candidate in searching. As a result, the 
proposed algorithm achieves a remarkable reduction 
of recognition time by avoiding exhaustive 
computations. 

2 VITERBI SCORING ALGORITHM 
THIS paper focuses on the HMM-based isolated 

word recognition systems because the advanced 
search network might obstruct the clear understanding 
of the proposed modified Viterbi scoring process. A 
HMM is characterized by an initial state probability 
π={πj}, a state transition probability A={aij}, and an 
observation probability B={bj(ot)} (Rabiner, 1989, 
Lou, 1995). In the HMM-based isolated word 
recognition, each word is individually represented by 
a HMM λv for 1≤v≤W, where W is the number of word 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

models and λ represents a statistical set of π, A, and B. 
Given an observation sequence o=[o1, o2, ····, oT], 
where T is the number of observations, the speech 
recognizer calculates and compares all P(o|λv) for 
1≤v≤W so as to find a word with the highest 
probability. Table 1 summarize symbols used in this 
paper. In general, the conventional word-based HMM 
system recognizes a word by using the log-Viterbi 
algorithm (Rabiner, 1989, Lou, 1995) described in 
Figure 2.  

IN the algorithm, indices i and j range from 1 to N, 
and t represents the index of observation time ranging 
from 1 to T. Given an observation sequence o and 
HMM λv, the algorithm finds the most likely state 

 
 

Figure 1. The typical structure of speech recognition systems. 

Log-Viterbi algorithm 
 
for v = 1 step 1 until W  
begin  

Input: observation sequence o and HMM λv. 
Initiation: 1(1) log + log ( ) for 1 .j j jb o j N     
for t = 2 step 1 until T 
begin 

( ) max{ ( 1) log } log ( ) for 1 , .j i ij j tt t a b o i j N        

end 
Termination:

1
( | ) max{ ( )}. v T

j N
P o j 

 
  

end 

Decision:
1

ˆ arg max{ ( | )}.v
v W

v P o 
 

  
 

Figure 2. The conventional log‐Viterbi algorithm. 
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sequence and its probability. At the beginning of the 
search, each state is initialized to the initial state 
probability π*={logπj} and the first observation 
probability logbj(o1). To update the state probability 
δj(t), we need to find the most likely transition coming 
into each state. This is achieved by adding log 
transition probabilities A*={logaij} to their previous 
state probability δi(t−1). As the HMM structure 
normally simplifies its transitions based on the left-to-
right model, the state transition probability aij=0 if i ≠ 
j or i ≠ j−1. This sum is then added to the log 
observation probability B*={logbj(ot)} assigned to the 
given state of the t-th observation. This process is 
performed recursively until the observation sequence 
is completed. At the end of the recursion, the highest 
state probability becomes P(o|λv) representing the 
probability of the HMM λv for the given observation. 
This log-Viterbi algorithm computes all P(o|λv) for 
each word model. At last, a word v with the highest 
P(o|λv) is selected as the recognized word for the given 
observation sequence o. Figure 3 shows a trellis of the 
Viterbi scoring procedure that uses the left-to-right 
state transition model. For the purpose of clarification, 
only a part of trellis ranging from t−1 to t+2 is 
illustrated for a word. Though the Viterbi algorithm 
efficiently finds the best matching model, the 
algorithm necessitates a tremendous amount of 
computation and enormous data accesses, since it 
takes into account every state in all the reference 
words for the length of the test utterance. More 
precisely, the number of states that should be 
considered to recognize a word is N×T×W. Moreover, 
each state is associated with the most complex 
computation of the speech recognizer, the observation 
probability computation, which is performed under 
multi-dimensional Gaussian mixture model (GMM). 

TO lessen the computational complexity, efficient 
structures have been proposed for hardware 
implementation (Yoshizawa, Wada, Hayakawa, & 
Miyanaga, 2006, Nakamura, Shimazaki, Yamamoto, 
K. Takagi, & N. Takagi, 2012), most of which employ 
parallel and pipelining techniques to achieve high-
speed realizations. Although those approaches made a 
success in achieving high-speed speech recognizers, 

the amount of computation is still proportional to 
N×T×W. Unlike the advanced implementation 
techniques, (Park, K. Cho, & J. Cho, 2002, Paramonov 
et. al., 2014) presented an early termination technique 
to skip a redundant computation of the state 
probabilities. As reference words in the Viterbi 
algorithm is searched one by one, (Park et. al., 2002) 
terminates the scoring computation for a word and 
move on to the next testing word when the state 
probability of the word is less likely than P(o|λv) of the 
previously compared words. The early termination 
method can reduce unnecessary state probability 
scoring, however, each state probability is demanded 
to compare with the most likely P(o|λv) of the 
previously tested words, and the improvement 
depends on the order of reference models. For 
instance, when the last reference model is the desired 
word, the computational saving is not as significant as 
the case that the first reference model is the word. 

3 PROPOSED ALGORITHM 
A new modified Viterbi scoring method is 

proposed for HMM-based speech recognition systems. 
Dijkstra’s shortest-path algorithm (Nilsson, 1980) is 
employed so as to eliminate unnecessary state 
computations while preventing the recognition 
accuracy from deteriorating. We first analyze the 
trellis to translate the Viterbi scoring into the shortest-
path searching, and then describe the proposed Viterbi 
scoring algorithm. 

THE conventional log-Viterbi algorithm described 
in Figure 2 decides the reference model v with the 
highest P(o|λv) as the recognized word. For this, it 
computes the intermediate state probability δj(t) by 
summing the most likely transition probability and the 
observation probability logbj(ot). To decide the most 
likely transition probability for state j at time t, the 
comparison is performed to select the maximum sum 
of the previous state probability δi(t−1) and transition 
probability logaij. The logarithm is applied to convert 
multiplication into addition and to avoid the underflow 
of state probability. Probability values ranging from 0 
to 1 are all negative in the logarithm domain. If all the 
log-probabilities associated with πj, aij, bj(ot), and δj(t) 

 
 

Figure 3. The trellis based on the log‐Viterbi algorithm when the number of state N is 4. 
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are negated, they are converted to positive values, and 
the comparison performed to select the maximum, 
max{δi(t−1)+logaij}, is changed to 
min{δi(t−1)−logaij}. As the trellis of Viterbi scoring 
becomes monotonically increasing in that case, the 
Viterbi scoring can be considered as a kind of 
shortest-path search that deals with positive costs of 
−logaij and −logbj(ot). A word with the lowest P(o|λv) 
is determined as the recognized word. 

DIJKSTRA’s algorithm is widely used to find the 
shortest path in a graph (Nilsson, 1980). It follows the 
best-first search and always finds the lowest-cost path 
based on the principle of optimality (Dreyfus & Law, 
1977). Let us assume that a graph consists of nodes 
with given cost values. To find the shortest path, 
Dijkstra’s algorithm always finds the best path first 
and move further until reach to the goal node. More 
precisely, the algorithm runs as shown in Figure 4. As 
Dijkstra’s algorithm uses the best-first search, it first 
searches for a node that appears to be close to the 
goal. Furthermore, unvisited nodes do not need to be 
searched after arriving to the goal node. Given the 
monotonically increasing trellis, the algorithm can be 
employed so as to decrease state computations. The 
trellis is easily considered as a tree structure with a 
common initial node that is virtually assumed, and 
every state in all the reference words is regarded as the 
node. The node with the smallest state probability is 
selected as the most likely path. 

FURTHERMORE, the algorithm is slightly revised 
to manage the most likely path efficiently. Although 
Dijkstra’s algorithm takes into account all N×W nodes 
at a time t, the speech-recognition system decides a 
word based on the reference model rather than 
individual paths. Thus, we employ two-phase 

comparison to efficiently manage the minimum 
values. In the proposed algorithm, the first phase 
chooses a local minimum (LM) associated with the 
minimum state probability for each reference model, 
and the second phase compares W local minima to 
decide the global minimum (GM). To expedite a 
selection of the GM, a min-heap structure (Tarjan, 
1983) is used to implement the priority queue. The 
GM is effectively managed with a min-heap of size W 
to avoid a large amount of comparisons to be 
performed for N×W nodes. All the N nodes of the 
reference model corresponding to the GM are searched 
to find a new LM for the reference model. 

THE proposed algorithm is described in Figure 5. 
At the beginning of searching, each state is initialized 
to the sum of −logπj and −logbj(o1), and for each 
reference model v, the LM(v) is selected among N 
state probabilities δj(1), 1≤j≤N. The most likely model 
is the reference model indicated by the GM. To find 
the lowest-cost path, N paths in the reference model v  
corresponding to the GM is examined. Based on the 
updated state probabilities δj( vt  ), the LM of v  is newly 
selected, and the min-heap and the GM are 
accordingly updated. When we arrive at the end of a 
reference model at time T, the scoring procedure is 
terminated and the reference model becomes the 
recognized word. Note that the remaining uncalculated 
scores are guaranteed to be higher than the score of 
the recognized word, since the most likely reference 
model is selected as the GM every time. Figure 6 
exemplifies a graphical representation of the proposed 
algorithm that uses the left-to-right state transition 
model. For the sake of simplicity, the numbers of 
words and states are both fixed to 4. Word 3 is 

Start

Step1. Remove the best node
The node with lowest cost is 

removed from queue

Goal node in priority 
queue?

Step2. Update neighbors
The cost values of the removed 
node's neighbors are updated

Step3. Insert the neighbors
The updated neighbors are 

inserted into the queue

End

Initialization
Initial node is inserted 
into a priority queue

 
 

Figure 4. Dijkstra’s algorithm 
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selected as the recognized word since it is arrived first, 
and its final LM is smaller than those of the other 
words. Consequently, the overall computational 
complexity of speech recognition can be decreased 
due to the skipped OPCs and LSCs. Note that the 
proposed method always need less computations 
without any recognition degradation. Unlike the 
previous early termination (Park et. al., 2002), in 
addition, the computational reduction does not depend 
on the testing order of reference models. 

4 SIMULATION RESULTS 
TO compare the computational complexities of 

different scoring algorithms, we have simulated three 
different ones: the conventional Viterbi algorithm 
(Nilsson, 1980), the early termination method (Park et. 
al., 2002), and the proposed modified Viterbi 

algorithm with various configurations of words, states, 
and Gaussian mixture models. In general, the pruning 
technique (Huang, Alejandro, & Hon, 2001) that 
removes unlikely paths is one of fascinating methods 
to decrease the computational complexity, but it 
degrades the recognition accuracy inherently due to 
the finite beam width and threshold. Note that the 
three scoring algorithms do not induce any searching 
errors degrading the recognition accuracy. For fair 
comparison, the typical speech recognition systems 
shown in Figure 1 is assumed and the pruning 
technique is not considered in the comparison. 

FOR speech-recognition experiments, the speech 
signal is sampled at 16 KHz with 16-bit quantization, 
and 39 feature vectors are extracted for every 32ms 
overlapped frame. In a speech corpus collected from 
32 female and 38 male speakers from Korean 

 
 

Figure 6. The tree structure based on the proposed algorithm when the numbers of words and states are 4. 

Proposed algorithm 
 
Input: observation sequence o and HMM λv. 

Initiation: 
for v = 1 step 1 until W 
begin 

1

*

(1) log log ( ) for 1 .

( ) min{ (1)} for 1 .

1. 

j j j

j

v

b o j N

LM v j N

t

 


    

  


 

end 
Best-first scoring: 

Step1: * { ( )} for 1 .H LM v v W    

Step2: 
* min{ ( )},
argmin{ ( )} for 1 .

is deleted.
v

GM LM v
v LM v v W

H GM


  



 

Step3: 
( ) min{ ( 1) log }

           log ( ) for 1 , .

1.
v

j v i v ij

j t

v v

t t a

b o i j N

t t

    

 
 

 

Step4: ( ) min{ ( )} for 1 .

( ) is inserted.
j vLM v t j N

H LM v

  


  

Step5: if T, quit. Otherwise, go to Step2.vt   

Decision: ˆ .v v
  *H: min-heap, LM: local min., GM: global min.  

 
 

Figure 5. The proposed modified Viterbi scoring algorithm. 
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Phonetically Balanced Words (KPBW) (ETRI, 1995), 
60% utterances are used for training and the remaining 
40% are used for testing. More precisely, Hidden 
Markov Model Toolkit (HTK) developed from 
Cambridge University (Yong et. al., 2002) is used for 
obtain trained HMM sets. For the three scoring 
algorithms, Figure 7 shows how the ratio of the 
calculated states to the overall N×T×W states depends 
on the numbers of reference models, states, and 
GMMs. Since the effectiveness of the early 
termination method (Park et. al., 2002) is dependent 
on the testing order of reference models, the correct 
word model is tested at the middle of the reference 
word sequences. On the average, the proposed 
modified Viterbi algorithm saves the computational 
complexity by more than 21% and 10%, compared to 
the conventional Viterbi scoring and early termination 
algorithms, respectively. In order to bring a practical 
contribution, the overall recognition time including 
comparison computations is measured in a 2.4 GHz 
computer system. The results are plotted in Figure 8, 
where it is clear that the less computational 
complexity leads to the faster recognition. From 
Figure 7 and Figure 8, we can see that the 
improvement of the proposed algorithm becomes 
more significant as the numbers of the words, states, 
and GMMs increase. Furthermore, an advanced tree 
searching algorithm including A-Star algorithm is 
currently investigated so as to achieve a further 
improvement (Nilsson, 1980).  

5 CONCLUSION 
THE Viterbi scoring that compares test utterances 

with reference models to find the best matching model 
suffers from huge computational complexity. This 
paper has presented a modified Viterbi scoring 
algorithm so as to effectively eliminate unnecessary 
computations. In the proposed method, the Viterbi 
scoring is translated into the shortest-path search, and 
Dijkstra’s shortest-path algorithm is applied to 
decrease the computational complexity without 
sacrificing recognition accuracy. Moreover, a two-
phase comparison method has been proposed to 
manage the state probabilities efficiently. The 
proposed method reduces the computational 
complexity and recognition time by more than 21% 

and 10% compared to the conventional Viterbi scoring 
and the early termination (Park et. al., 2002) 
algorithms, respectively. The complexity reduction 
becomes more significant if the numbers of words, 
states, and GMMs increase. Furthermore, the proposed 
method can be applied to the connected word 
recognition and continuous speech recognition when 
the Viterbi searching is employed. 
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